Phenomenological BRDF Modeling For Engineering Applications

James Jafolla, Chris Blasband Surface Optics Corporation, San Diego, CA

Outline

- BRDF Definition
- Optical Measurements
- Optical Properties of Materials
- Phenomenological BRDF Modeling
- Parameterized BRDF Models
- Conclusions

Bidirectional Reflectance Distribution Function (BRDF)

BRDF:
$$\rho'(\theta_i, \theta_r, \phi)$$

$$\frac{\delta N_r(\theta_r, \phi)}{N_i(\theta_i)} = \rho'(\theta_i, \theta_r, \phi) \cos \theta_i \delta \Omega_i$$

DHR:
$$\rho_D(\theta_i)$$

$$\frac{N_r}{N_i(\theta_i)} = \iint \rho'(\theta_i, \theta_r, \varphi) \cos \theta_r \sin \theta_r d\theta_r$$

$$= \rho_D(\theta_i)$$

n = Outward Surface Normal Unit Vector

 θ_i = Incident Zenith Angle

 θ_r = Reflected Zenith Angle

 ϕ = Reflected Azimuth Angle

(These apply to isotropic surfaces; also, $\phi \equiv \phi_r - \phi_i$ here.)

 $\pi \rho' = \rho_D$ For Lambertian Diffuse Surface

Pictorial Representation of BRDF

F. Nicodemus, "Directional Reflectance and Emissivity of an Opaque Surface", *Appl. Opt.*, **4**, 767-773, 1965.

Optical Instrumentation for Coatings Characterization

SOC-600 Hand-Held Directional Reflectometer (HHDR)

Measures BRDF of A Sample at Over 30,000 Reflectance Angles

Varying Incidence Angle from 0° to 85°

Currently 3-5 µm and 8-12 µm Bands

Visible/Spectral IR Heads in Development

Computes HDR from BRDF

Displays Real Time Images of BRDF

Providing a Pass/Fail Indication for HDR & BRDF

Frame Rates Up To 60 Per-Second

SOC-400 Surface Measurement System

Handheld FTIR for Lab/Field Spectroscopic Analysis

Optical Heads for Specular, Diffuse and Hemispheric Measurements Spectral Coverage from 2-25 µm, 2,4,8,16,32 cm⁻¹ Resolution Longneck Accessory for Remote Sampling and Visualization Accessories for Non-KBr analysis of Powders Diffuse Head for Surface Inspection of Contaminants and Films Robotic Control for Matrix Mapping of Surfaces

BRDF Measurements

Army Green 383 Camouflage Paint $\lambda = 0.5 \text{ microns } \theta_i = 50^{\circ}$

Reflection and Transmission from a Plane Medium

• Fresnel Coefficients for Oblique Incidence

$$r_{l} = \frac{E_{lr}}{E_{li}} = \frac{\cos\Theta_{t} - m\cos\Theta_{i}}{\cos\Theta_{t} + m\cos\Theta_{i}} \qquad \text{Parallel} \qquad t_{l} = \frac{E_{lt}}{E_{li}} = \frac{2\cos\Theta_{i}}{\cos\Theta_{t} + m\cos\Theta_{i}}$$

$$r_{r} = \frac{E_{rr}}{E_{ri}} = \frac{\cos\Theta_{i} - m\cos\Theta_{t}}{\cos\Theta_{i} + m\cos\Theta_{t}} \qquad \text{Perpendicular} \qquad t_{r} = \frac{E_{rt}}{E_{ri}} = \frac{2\cos\Theta_{i}}{\cos\Theta_{i} + m\cos\Theta_{t}}$$

Where:
$$m \sin \Theta_t = \sin \Theta_i$$
 (Snell's Law)
 $m = (n-ik)$ Complex Refractive Index

Unpolarized Reflection and Transmission:

$$R(\Theta_i) = \frac{1}{2} (|r_l|^2 + |r_r|^2)$$
 and $T(\Theta_i) = \frac{1}{2} (|t_l|^2 + |t_r|^2)$

Absorption in a Medium

• EM Poynting Vector for Complex Refractive Index m = (n + ik)

$$S = \frac{1}{2} \operatorname{Re} \left\{ \sqrt{\frac{\varepsilon}{\mu}} \right\} E_o \Big|^2 \exp(-\frac{4\pi k}{\lambda}) \hat{e}$$

- Irradiance, I [energy/area/time], is magnitude of S
- Energy absorbed in medium over path, z, is

$$I = I_o e^{-\alpha z}$$

The Absorption coefficient is defined as

$$\alpha = \frac{4\pi k}{\lambda}$$

Optical Theory of Materials

 Frequency Inter-Dependence of the Real and Imaginary parts is given by the Kramers-Kronig (Dispersion) Relations

$$\varepsilon'(\omega) = 1 + \frac{2}{\pi} \int_{0}^{\infty} \frac{\Omega \varepsilon''(\Omega)}{\Omega^{2} - \omega^{2}} d\Omega$$

- Phenomenological Models Used to Describe Frequency Dependence
 - Lorentz Model for Damped Electronic, Molecular and Lattice Vibrations
 - Debye Model for Molecular Polarizability
 - Drude Model for Free Electrons in Metals

Optical Phenomenology of Log Normal 8D = 12.5. Signal = 8.1 **Composite Materials** Allyd Nandik Pigment Size Distribution Reflected Energy Incident Energy **Binder Optical Constants** πF_0 Cenamic Paint, 20 Dep. Binder Rough Surface Refracted Energy Pigments • Multiple Scattering Spectral Reflectance Caractic Mondifi Alaminum N and K 0.00 2 4 6 8 10 12 14 16 18 20 22 24 26 Wavelength (Microns) 4 6 8 10 12 14 16 18 20 22 24 26 Wavelength (Microns) **Pigment Optical Constants Substrate Optical Constants**

Analytical Techniques

- Mie/Non-Spherical Techniques for Calculating Pigment Single Scattering
- Multiple Scattering Radiative Transfer Used for Volume Scattering
- Rough Surface Scattering Used for Binder Interface
- Radiative Coupling of Surface and Volume Scattering

Scattering Coatings Computer Aided Design (ScatCad) Code

- Implements Single Scattering and Multiple Scattering Radiative Transfer Techniques for Engineering Analysis of Pigmented Coatings
- Predicts the Spectral BRDF and HDR Based on the Optical Constants and Micro-Physical Composition of the Coating
- Windows 95/98/NT PC Based
- Provides Modules for Optical Constant Analysis
- Interfaces to SOC-200/600 BDR and SOC-100/400 HDR Measurement Systems

Analysis Based Coatings Design

Optical Characterization of Materials

ScatCad Analysis

Spectral Directional and Bidirectional Reflectance

Physical Characterization of Materials

Pigment Single Scattering

- Mie Theory for Homogeneous and Layered Spherical Pigments
 - 20 Layer Sphere Algorithm Developed by Weisbrod (MDTI-TM-92-01, McDonnell Douglas, 1992)
- Non-Spherical Single Scattering Techniques
 - Henyey-Greenstein, 2 Parameter Phase Function
 - T-Matrix for Axially Symmetric Particles (Mishchenko, *Appl. Opt.*, **32**, 4652-4666, 1993)
 - Discrete Dipole Approximation for Non-Homogeneous/Irregular Particles (Draine and Flatau, *J. Opt. Soc. Am.*, 11, 1491-1499, 1994)

Radiative Transfer Analysis

Radiative Transfer Equation

$$\mu \frac{dI(\theta,\phi)}{d\tau} = -I(\theta,\phi) + \frac{\omega_0}{4\pi} \int_{4\pi} p(\theta',\phi',\theta,\phi) I(\theta',\phi') d\omega'$$
$$+ \frac{\omega_0}{4\pi} p(\theta_0,\phi_0,\theta,\phi) F_o e^{-\tau/\mu_0} + (1-\omega_0) B(T).$$

Where

 ω_{o} is the single scattering albedo

 $p(\theta', \phi', \theta, \phi) = p(\cos \alpha)$ is the phase function

F_o is the incident source radiation

B(T) is the thermal emission

$$\mu = \cos\theta$$

HDR Analysis

- Extension of Kubelka-Munk Two-Flux Analysis
- Uses Three-Flux Approximation to Radiative Transfer Equation
 - Provides Rapid Spectral Calculations for Design Optimization
- Considers Multiple Paint Layers Over Substrate
 - Surface Scattering Not Included
- Binder Absorption Treated as Additional Pigment Absorption mean free path = $l_m = 1/(N\pi r^2)$ $\Delta C_{abs} = 4\pi l_m k_b/\lambda$

BRDF Analysis - Adding/Doubling

Adding/Doubling Technique

Radiative Adding of Two Layers, τ_a and τ_b

$$S = R_a *R_b [1 - R_a *R_b]^{-1}$$

$$D = T_a *S \exp(-\tau_a / \mu_o) + S *T_a$$

$$U = R_b \exp(-\tau_a / \mu_o) + R_b *D$$

$$R(\tau_a + \tau_b) = R_a + \exp(-\tau_a / \mu_o)U + T_a *U$$

$$T(\tau_a + \tau_b) = \exp(-\tau_b / \mu_o)D + T_b \exp(-\tau_a / \mu_o) + T_b *D$$

Where X*Y terms represent integrals over zenith angle

$$X * Y = \int_{0}^{1} x^{m}(\mu, \mu') y^{m}(\mu', \mu_{o}) 2\mu' d\mu'$$

And x^m is the Fourier expansion in azimuth

$$x^{m}(\mu, \mu_{o}) = \frac{1}{2\pi} \int_{0}^{2\pi} x(\mu, \mu_{o}, \phi) \cos m\phi d\phi$$

Rough Surface Scattering

Slightly Rough Surfaces

- •Rice perturbation model
- •Roughness is isotropic
- •Surface slopes are small

Very Rough Surfaces

- •Tangent-plane approximation
- •Roughness is isotropic
- •Surface curvature << 1
- •RMS roughness height $< \lambda/2\pi$ •Correlation length << Sample Length
 - •No multiple scattering
 - •No shadowing

Surface/Volume Coupling

Modification of Adding/Doubling for Coupling Surface (R_s) and Volume (R_p) Scattering

$$S = R_s *R_p [1 - R_s *R_p]^{-1}$$
 $D = [1 + S] T_s$
 $U = R_p D$
 $R = R_p + T_s *U'n_1^2/n_2^2$
 $T = T_s *D$

Where

$$X * Y = \int_{0}^{1} \left[x_{c}(\mu) \frac{\delta(\mu - \mu')}{2\mu} + x^{m}(\mu, \mu') \right] \left[y_{c}(\mu') \frac{\delta(\mu' - \mu_{o})}{2\mu'} + y^{m}(\mu', \mu_{o}) \right] 2\mu' d\mu'$$

$$= x_{c}(\mu) y_{c}(\mu) \frac{\delta(\mu - \mu_{o})}{2\mu} + x_{c}(\mu) y^{m}(\mu, \mu_{o}) + y_{c}(\mu_{o}) x^{m}(\mu, \mu_{o})$$

$$+ \int_{0}^{1} x^{m}(\mu, \mu') y^{m}(\mu', \mu_{o}) 2\mu' d\mu'$$

Model Versus Measurement

Pigment Modeled as Air Core and 2 Micron Ceramic Layer Alkyd Binder Surface Roughness Commensurate With Pigment Dimensions Ceramic (Fly-Ash) Pigment 10 - 70 micron diameter Log-Normal Size distribution Mean Diameter 41 microns

Optical Constant Determination

Ceramic Optical Constants
Determined From Analysis
of HDR Measurement of
Micro-Balloon Powder

Alkyd Optical Constants
Determined From Analysis
of HDR Measurement of
Thin Film Over Al Substrate

HDR Model Versus Measurements

BRDF Model Versus Measurements

ScatCad Calculation

Measurement

Parameterized BRDF Models

- Parameterized BRDF Models used for Signature Simulations
- Specular/Diffuse Partition
 - Implemented in Graphics Accelerator Cards
- Sandford-Robertson Four-Parameter Model
 - Widely Used in Signature Codes (e.g., SPIRITS)
- OPTASM Lorentzian Lobe Model
 - Non-Specular BRDF Lobes, Mueller Matrix

Sandford-Robertson Model

 Based on the Separation of the Spectral and Directional Dependence of the Total BRDF

$$\rho'(\theta_i, \phi_i; \theta_r, \phi_r; \lambda) = f_r(\theta_i, \phi_i; \theta_r, \phi_r) \rho(\lambda)$$

$$f_r(\theta_i, \phi_i; \theta_r, \phi_r) = f_S(\theta_i, \phi_i; \theta_r, \phi_r) + f_D(\theta_i, \phi_i; \theta_r, \phi_r)$$

• Fits Four Parameters to the BRDF

```
\rho_D(\lambda) = Diffuse Spectral Reflectance
```

 $\varepsilon(\lambda)$ = Spectral Emissivity

b = Grazing Angle Reflectivity

e = Width of Specular Lobe

S-R Model Fit to Green 383

$\lambda = 4.4$ microns

 $\lambda = 10 \text{ microns}$

OPTASM BRDF Model

•Angular Scattering Represented by Lorentzian Shaped Peaks

 ρ_o = Constant Term

A =Peak Strength

B = Lobe Width in Degrees

 Γ = Angle Between Peak Direction, \hat{k}_p , and Viewed Direction, \hat{k}_r .

$$\rho'(\hat{k}_{i}, \hat{k}_{r}) = \rho_{o} + A_{1} / \{B_{1}^{2} + 1 - \cos \Gamma_{1}\} + A_{2} / \{B_{2}^{2} + 1 - \cos \Gamma_{2}\}$$

$$\Gamma = \cos^{-1}(\hat{k}_{p} \cdot \hat{k}_{r})$$

- 2nd Term Represents Diffuse Scattering, 3rd Term Used for Specular Lobe (Nominally Seven Parameter Model)
- Additional Terms May Be Added for Non-Isotropic and Backscattering Features

OPTASM Model Fit to Green 383

$\lambda = 4.4$ microns

OPTASM BRDF Model Prediction Versus Measurement at 50 Degrees

λ	Fit	$\theta_{ m i}$		
	Param	20	40	60
0.54	$ ho_{ m o}$	0.224	0.0	0.0
	θ_{p1}	83.2	105.7	185.1
	A_1	4.74e-5	6.81e-3	7.85e-2
	B_1	2.06e-2	5.74e-0	1.3e+1
	θ_{p2}	-2.0	-175.6	88.5
	A_2	-6.6e-1	7.38e-2	1.61e-2
	B_2	-2.4e+2	2.5e+2	8.87e-0
4.44	$ ho_{ m o}$	0.130	0.133	0.132
	θ_{p1}	21.0	41.7	60.7
	A_1	5.50e-4	2.35e-3	6.42e-3
	B_1	2.4e+0	3.48e-0	2.56e-0
	θ_{p2}	62.6	77.3	84.0
	A_2	3.89e-3	1.56e-2	7.67e-2
	B_2	1.1e+1	1.2e+1	9.57e-0
10.0	$ ho_{ m o}$	0.016	0.0	0.0
	θ_{p1}	23.2	41.8	73.8
	A_1	1.02e-2	3.85e-3	1.94e-1
	B_1	8.8e+0	3.30e-0	1.0e+1
	θ_{p2}	92.6	92.3	85.0
	A_2	1.21e-3	7.57e-2	9.94e-5
	B_2	1.3e+0	3.3e+1	1.0e+1

Conclusions

- Complex BRDF Phenomenology is a Significant Feature for Visible/IR Signature Simulations
- Optical Measurements and Phenomenological Models Can Provide Qualitative/Quantitative Insight Into the Optical Properties of Coatings and Surfaces
- ScatCad is a Phenomenological Model for Engineering BRDF and HDR Analysis of Pigmented Coatings
- Use of Parameterized BRDF Models Depends on the Quality of the Fit and the Ability of the Parameters to be Interpolated/Extrapolated to Other Angles